Combinatorial Dynamics and Entropy in Dimension One
2020-05-26 07:46:27
image1
In last thirty years an explosion of interest in the study of nonlinear dynamical systems occured. The theory of one-dimensional dynamical systems has grown out in many directions. One of them has its roots in the Sharkovski0 Theorem. This beautiful ... Read more
In last thirty years an explosion of interest in the study of nonlinear dynamical systems occured. The theory of one-dimensional dynamical systems has grown out in many directions. One of them has its roots in the Sharkovski0 Theorem. This beautiful theorem describes the possible sets of periods of all cycles of maps of an interval into itself. Another direction has its main objective in measuring the complexity of a system, or the amount of chaos present in it. A good way of doing this is to compute topological entropy of the system. The aim of this book is to provide graduate students and researchers with a unified and detailed exposition of these developments for interval and circle maps. Many comments are added referring to related problems, and historical remarks are made. Less
  • ISBN
  • 9789814553223
Compare Prices
Available Discount
No Discount available
Related Books