A Course in Algebraic Error-Correcting Codes
by Simeon Ball 2020-06-18 08:24:50
image1
This textbook provides a rigorous mathematical perspective on error-correcting codes, starting with the basics and progressing through to the state-of-the-art. Algebraic, combinatorial, and geometric approaches to coding theory are adopted with the a... Read more
This textbook provides a rigorous mathematical perspective on error-correcting codes, starting with the basics and progressing through to the state-of-the-art. Algebraic, combinatorial, and geometric approaches to coding theory are adopted with the aim of highlighting how coding can have an important real-world impact. Because it carefully balances both theory and applications, this book will be an indispensable resource for readers seeking a timely treatment of error-correcting codes. Early chapters cover fundamental concepts, introducing Shannon’s theorem, asymptotically good codes and linear codes. The book then goes on to cover other types of codes including chapters on cyclic codes, maximum distance separable codes, LDPC codes, p-adic codes, amongst others. Those undertaking independent study will appreciate the helpful exercises with selected solutions. A Course in Algebraic Error-Correcting Codes suits an interdisciplinary audience at the Masters level, including students of mathematics, engineering, physics, and computer science. Advanced undergraduates will find this a useful resource as well. An understanding of linear algebra is assumed. Less
  • File size
  • Print pages
  • Publisher
  • Publication date
  • Language
  • ISBN
  • 9.25 X 6.1 X 0 in
  • 177
  • Springer-Verlag/Sci-Tech/Trade
  • May 19, 2020
  • English
  • 9783030411534
Compare Prices
image
Paperback
Available Discount
No Discount available
Related Books