Multivalued Maps and Differential Inclusions
2020-05-29 07:07:16
image1
The theory of multivalued maps and the theory of differential inclusions are closely connected and intensively developing branches of contemporary mathematics. They have effective and interesting applications in control theory, optimization, calculus... Read more
The theory of multivalued maps and the theory of differential inclusions are closely connected and intensively developing branches of contemporary mathematics. They have effective and interesting applications in control theory, optimization, calculus of variations, non-smooth and convex analysis, game theory, mathematical economics and in other fields. This book presents a user-friendly and self-contained introduction to both subjects. It is aimed at 'beginners', starting with students of senior courses. The book will be useful both for readers whose interests lie in the sphere of pure mathematics, as well as for those who are involved in applicable aspects of the theory. In Chapter 0, basic definitions and fundamental results in topology are collected. Chapter 1 begins with examples showing how naturally the idea of a multivalued map arises in diverse areas of mathematics, continues with the description of a variety of properties of multivalued maps and finishes with measurable multivalued functions. Chapter 2 is devoted to the theory of fixed points of multivalued maps. The whole of Chapter 3 focuses on the study of differential inclusions and their applications in control theory. The subject of last Chapter 4 is the applications in dynamical systems, game theory, and mathematical economics. The book is completed with the bibliographic commentaries and additions containing the exposition related both to the sections described in the book and to those which left outside its framework. The extensive bibliography (including more than 400 items) leads from basic works to recent studies. Less
  • ISBN
  • 9789811220234
Compare Prices
Available Discount
No Discount available
Related Books